Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Adicionar filtros

Base de dados
Tipo de documento
Intervalo de ano
1.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.11.02.565304

RESUMO

In late 2023, a lineage of SARS-CoV-2 emerged and was named the BA.2.86 variant. BA.2.86 is phylogenetically distinct from other Omicron sublineages identified so far, displaying an accumulation of over 30 amino acid mutations in its spike protein. Here, we performed multiscale investigations to reveal the virological characteristics of the BA.2.86 variant. Our epidemic dynamics modeling suggested that the relative reproduction number of BA.2.86 is significantly higher than that of EG.5.1. Experimental studies showed that four clinically-available antivirals were effective against BA.2.86. Although the fusogenicity of BA.2.86 spike is similar to that of the parental BA.2 spike, the intrinsic pathogenicity of BA.2.86 in hamsters was significantly lower than that of BA.2. Since the growth kinetics of BA.2.86 is significantly lower than that of BA.2 in both in vitro cell cultures and in vivo, it is suggested that the attenuated pathogenicity of BA.2.86 is due to its decreased replication capacity.

2.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.09.07.556636

RESUMO

In September 2023, the SARS-CoV-2 XBB descendants, such as XBB.1.5 and EG.5.1 (originally XBB.1.9.2.5.1), are predominantly circulating worldwide. Unexpectedly, however, a lineage distinct from XBB was identified and named BA.2.86 on August 14, 2023. Notably, BA.2.86 bears more than 30 mutations in the spike (S) protein when compared to XBB and the parental BA.2, and many of them are assumed to be associated with immune evasion. Although the number of reported cases is low (68 sequences have been reported as of 7 September 2023), BA.2.86 has been detected in several continents (Europe, North America and Africa), suggesting that this variant may be spreading silently worldwide. On 17 August 2023, the WHO designated BA.2.86 as a variant under monitoring. Here we show evidence suggesting that BA.2.86 potentially has greater fitness than current circulating XBB variants including EG.5.1. The pseudovirus assay showed that the infectivity of BA.2.86 was significantly lower than that of B.1.1 and EG.5.1, suggesting that the increased fitness of BA.2.86 is not due to the increased infectivity. We then performed a neutralization assay using XBB breakthrough infection sera to address whether BA.2.86 evades the antiviral effect of the humoral immunity induced XBB subvariants. The 50% neutralization titer of XBB BTI sera against BA.2.86 was significantly (1.4-fold) lower than those against EG.5.1. The sera obtained from individuals vaccinated with 3rd-dose monovalent, 4th-dose monovalent, 4th-dose BA.1 bivalent, and 4th-dose BA.5 bivalent mRNA vaccines exhibited very little or no antiviral effects against BA.2.86. Moreover, the three monoclonal antibodies (Bebtelovimab, Sotrovimab and Tixagevimab), which worked against the parental BA.2, did not exhibit antiviral effects against BA.2.86. These results suggest that BA.2.86 is one of the most highly immune evasive variants ever.


Assuntos
Convulsões
3.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.08.16.553332

RESUMO

Circulation of SARS-CoV-2 Omicron XBB has resulted in the emergence of XBB.1.5, a new Variant of Interest. Our phylogenetic analysis suggests that XBB.1.5 evolved from XBB.1 by acquiring the F486P spike (S) mutation, subsequent to the acquisition of a nonsense mutation in ORF8. Neutralization assays showed similar abilities of immune escape between XBB.1.5 and XBB.1. We determined the structural basis for the interaction between human ACE2 and the S protein of XBB.1.5, showing similar overall structures between the S proteins of XBB.1 and XBB.1.5. The intrinsic pathogenicity of XBB.1.5 in hamsters is lower than that of XBB.1. Importantly, we found that the ORF8 nonsense mutation of XBB.1.5 resulted in impairment of MHC expression. In vivo experiments using recombinant viruses revealed that the XBB.1.5 mutations are involved with reduced virulence of XBB.1.5. Together, these data suggest that the mutations in ORF8 and S could enhance spreading of XBB.1.5 in humans.

4.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.12.29.522275

RESUMO

The Omicron variant continuously evolves under the humoral immune pressure obtained by vaccination and SARS-CoV-2 infection and the resultant Omicron subvariants exhibit further immune evasion and antibody escape. Engineered ACE2 decoy composed of high-affinity ACE2 and IgG1 Fc domain is an alternative modality to neutralize SARS-CoV-2 and we previously reported its broad spectrum and therapeutic potential in rodent models. Here, we show that engineered ACE2 decoy retains the neutralization activity against Omicron subvariants including the currently emerging XBB and BQ.1 which completely evade antibodies in clinical use. The culture of SARS-CoV-2 under suboptimal concentration of neutralizing drugs generated SARS-CoV-2 mutants escaping wild-type ACE2 decoy and monoclonal antibodies, whereas no escape mutant emerged against engineered ACE2 decoy. As the efficient drug delivery to respiratory tract infection of SARS-CoV-2, inhalation of aerosolized decoy treated mice infected with SARS-CoV-2 at a 20-fold lower dose than the intravenous administration. Finally, engineered ACE2 decoy exhibited the therapeutic efficacy for COVID-19 in cynomolgus macaques. Collectively, these results indicate that engineered ACE2 decoy is the promising therapeutic strategy to overcome immune-evading SARS-CoV-2 variants and that liquid aerosol inhalation can be considered as a non-invasive approach to enhance efficacy in the treatment of COVID-19.


Assuntos
COVID-19 , Síndrome Respiratória Aguda Grave
5.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.12.27.521986

RESUMO

In late 2022, the SARS-CoV-2 Omicron subvariants have highly diversified, and XBB is spreading rapidly around the world. Our phylogenetic analyses suggested that XBB emerged by recombination of two co-circulating BA.2 lineages, BJ.1 and BM.1.1.1 (a progeny of BA.2.75), during the summer of 2022 around India. In vitro experiments revealed that XBB is the most profoundly resistant variant to BA.2/5 breakthrough infection sera ever and is more fusogenic than BA.2.75. Notably, the recombination breakpoint is located in the receptor-binding domain of spike, and each region of recombined spike conferred immune evasion and augmented fusogenicity to the XBB spike. Finally, the intrinsic pathogenicity of XBB in hamsters is comparable to or even lower than that of BA.2.75. Our multiscale investigation provided evidence suggesting that XBB is the first documented SARS-CoV-2 variant increasing its fitness through recombination rather than single mutations.

6.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.12.05.519085

RESUMO

In late 2022, although the SARS-CoV-2 Omicron subvariants have highly diversified, some lineages have convergently acquired amino acid substitutions at five critical residues in the spike protein. Here, we illuminated the evolutionary rules underlying the convergent evolution of Omicron subvariants and the properties of one of the latest lineages of concern, BQ.1.1. Our phylogenetic and epidemic dynamics analyses suggest that Omicron subvariants independently increased their viral fitness by acquiring the convergent substitutions. Particularly, BQ.1.1, which harbors all five convergent substitutions, shows the highest fitness among the viruses investigated. Neutralization assays show that BQ.1.1 is more resistant to breakthrough BA.2/5 infection sera than BA.5. The BQ.1.1 spike exhibits enhanced binding affinity to human ACE2 receptor and greater fusogenicity than the BA.5 spike. However, the pathogenicity of BQ.1.1 in hamsters is comparable to or even lower than that of BA.5. Our multiscale investigations provide insights into the evolutionary trajectory of Omicron subvariants.

7.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.08.07.503115

RESUMO

SARS-CoV-2 Omicron BA.2.75 emerged in May 2022. BA.2.75 is a BA.2 descendant but is phylogenetically different from BA.5, the currently predominant BA.2 descendant. Here, we showed that the effective reproduction number of BA.2.75 is greater than that of BA.5. While the sensitivity of BA.2.75 to vaccination- and BA.1/2 breakthrough infection-induced humoral immunity was comparable to that of BA.2, the immunogenicity of BA.2.75 was different from that of BA.2 and BA.5. Three clinically-available antiviral drugs were effective against BA.2.75. BA.2.75 spike exhibited a profound higher affinity to human ACE2 than BA.2 and BA.5 spikes. The fusogenicity, growth efficiency in human alveolar epithelial cells, and intrinsic pathogenicity in hamsters of BA.2.75 were comparable to those of BA.5 but were greater than those of BA.2. Our multiscale investigations suggest that BA.2.75 acquired virological properties independently of BA.5, and the potential risk of BA.2.75 to global health is greater than that of BA.5.


Assuntos
Adenocarcinoma Bronquioloalveolar
8.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.05.26.493539

RESUMO

After the global spread of SARS-CoV-2 Omicron BA.2 lineage, some BA.2-related variants that acquire mutations in the L452 residue of spike protein, such as BA.2.9.1 and BA.2.13 (L452M), BA.2.12.1 (L452Q), and BA.2.11, BA.4 and BA.5 (L452R), emerged in multiple countries. Our statistical analysis showed that the effective reproduction numbers of these L452R/M/Q-bearing BA.2-related Omicron variants are greater than that of the original BA.2. Neutralization experiments revealed that the immunity induced by BA.1 and BA.2 infections is less effective against BA.4/5. Cell culture experiments showed that BA.2.12.1 and BA.4/5 replicate more efficiently in human alveolar epithelial cells than BA.2, and particularly, BA.4/5 is more fusogenic than BA.2. Furthermore, infection experiments using hamsters indicated that BA.4/5 is more pathogenic than BA.2. Altogether, our multiscale investigations suggest that the risk of L452R/M/Q-bearing BA.2-related Omicron variants, particularly BA.4 and BA.5, to global health is potentially greater than that of original BA.2.


Assuntos
Adenocarcinoma Bronquioloalveolar
9.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.04.03.486864

RESUMO

Recent studies have revealed the unique virological characteristics of Omicron, the newest SARS-CoV-2 variant of concern, such as pronounced resistance to vaccine-induced neutralizing antibodies, less efficient cleavage of the spike protein, and poor fusogenicity. However, it remains unclear which mutation(s) in the spike protein determine the virological characteristics of Omicron. Here, we show that the representative characteristics of the Omicron spike are determined by its receptor-binding domain. Interestingly, the molecular phylogenetic analysis revealed that the acquisition of the spike S375F mutation was closely associated with the explosive spread of Omicron in the human population. We further elucidate that the F375 residue forms an interprotomer pi-pi interaction with the H505 residue in another protomer in the spike trimer, which confers the attenuated spike cleavage efficiency and fusogenicity of Omicron. Our data shed light on the evolutionary events underlying Omicron emergence at the molecular level.

10.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.02.14.480335

RESUMO

Soon after the emergence and global spread of a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron lineage, BA.1 (ref1, 2), another Omicron lineage, BA.2, has initiated outcompeting BA.1. Statistical analysis shows that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralisation experiments show that the vaccine-induced humoral immunity fails to function against BA.2 like BA.1, and notably, the antigenicity of BA.2 is different from BA.1. Cell culture experiments show that BA.2 is more replicative in human nasal epithelial cells and more fusogenic than BA.1. Furthermore, infection experiments using hamsters show that BA.2 is more pathogenic than BA.1. Our multiscale investigations suggest that the risk of BA.2 for global health is potentially higher than that of BA.1.


Assuntos
Infecções por Coronavirus
11.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.01.27.477964

RESUMO

Objective: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen causing the coronavirus disease 2019 (COVID-19) global pandemic. Recent studies have shown the importance of the throat and salivary glands as sites of virus replication and transmission. The viral host receptor, angiotensin-converting enzyme 2 (ACE2), is broadly enriched in epithelial cells of the salivary glands and oral mucosae. Oral care products containing cetylpyridinium chloride (CPC) as a bactericidal ingredient are known to exhibit antiviral activity against SARS-CoV-2 in vitro. However, the exact mechanism of action remains unknown. Methods: This study examined the antiviral activity of CPC against SARS-CoV-2 and its inhibitory effect on the interaction between the viral spike (S) protein and ACE2 using an enzyme-linked immunosorbent assay. Results: CPC (0.05%, 0.1% and 0.3%) effectively inactivated SARS-CoV-2 within the contact times (20 and 60 s) in directions for use of oral care products in vitro. The binding ability of both the S protein and ACE2 were reduced by CPC. Conclusions: Our results suggest that CPC inhibits the interaction between S protein and ACE2, and thus, reduces infectivity of SARS-CoV-2 and suppresses viral adsorption.


Assuntos
Infecções por Coronavirus , COVID-19
12.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.12.23.474055

RESUMO

Experiments with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are limited by the need for biosafety level 3 (BSL3) conditions. A SARS-CoV-2 replicon system rather than an in vitro infection system is suitable for antiviral screening since it can be handled under BSL2 conditions and does not produce infectious particles. However, the reported replicon systems are cumbersome because of the need for transient transfection in each assay. In this study, we constructed a bacterial artificial chromosome vector (the replicon-BAC vector) including the SARS-CoV-2 replicon and a fusion gene encoding Renilla luciferase and neomycin phosphotransferase II, examined the antiviral effects of several known compounds, and then established a cell line stably harboring the replicon-BAC vector. Several cell lines transiently transfected with the replicon-BAC vector produced subgenomic replicon RNAs (sgRNAs) and viral proteins, and exhibited luciferase activity. In the transient replicon system, treatment with remdesivir or interferon-{beta} but not with camostat or favipiravir suppressed the production of viral agents and luciferase, indicating that luciferase activity corresponds to viral replication. VeroE6/Rep3, a stable replicon cell line based on VeroE6 cells, was successfully established and continuously produced viral proteins, sgRNAs and luciferase, and their production was suppressed by treatment with remdesivir or interferon-{beta}. Molnupiravir, a novel coronavirus RdRp inhibitor, inhibited viral replication more potently in VeroE6/Rep3 cells than in VeroE6-based transient replicon cells. In summary, our stable replicon system will be a powerful tool for the identification of SARS-CoV-2 antivirals through high-throughput screening.


Assuntos
Infecções por Coronavirus
13.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.07.28.454085

RESUMO

SARS-CoV-2 Lambda, a new variant of interest, is now spreading in some South American countries; however, its virological features and evolutionary trait remain unknown. Here we reveal that the spike protein of the Lambda variant is more infectious and it is attributed to the T76I and L452Q mutations. The RSYLTPGD246-253N mutation, a unique 7-amino-acid deletion mutation in the N-terminal domain of the Lambda spike protein, is responsible for evasion from neutralizing antibodies. Since the Lambda variant has dominantly spread according to the increasing frequency of the isolates harboring the RSYLTPGD246-253N mutation, our data suggest that the insertion of the RSYLTPGD246-253N mutation is closely associated with the massive infection spread of the Lambda variant in South America.

14.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.06.17.448820

RESUMO

During the current SARS-CoV-2 pandemic, a variety of mutations have been accumulated in the viral genome, and at least five variants of concerns (VOCs) have been considered as the hazardous SARS-CoV-2 variants to the human society. The newly emerging VOC, the B.1.617.2 lineage (delta variant), closely associates with a huge COVID-19 surge in India in Spring 2021. However, its virological property remains unclear. Here, we show that the B.1.617 variants are highly fusogenic and form prominent syncytia. Bioinformatic analyses reveal that the P681R mutation in the spike protein is highly conserved in this lineage. Although the P681R mutation decreases viral infectivity, this mutation confers the neutralizing antibody resistance. Notably, we demonstrate that the P681R mutation facilitates the furin-mediated spike cleavage and enhances and accelerates cell-cell fusion. Our data suggest that the P681R mutation is a hallmark characterizing the virological phenotype of this newest VOC, which may associate with viral pathogenicity. HighlightsO_LIP681R mutation is highly conserved in the B.1.617 lineages C_LIO_LIP681R mutation accelerates and enhances SARS-CoV-2 S-mediated fusion C_LIO_LIPromotion of viral fusion by P681R mutation is augmented by TMPRSS2 C_LI


Assuntos
COVID-19
15.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.04.02.438288

RESUMO

During the current SARS-CoV-2 pandemic that is devastating the modern societies worldwide, many variants that naturally acquire multiple mutations have emerged. Emerging mutations can affect viral properties such as infectivity and immune resistance. Although the sensitivity of naturally occurring SARS-CoV-2 variants to humoral immunity has recently been investigated, that to human leukocyte antigen (HLA)-restricted cellular immunity remains unaddressed. Here we demonstrate that two recently emerging mutants in the receptor binding domain of the SARS-CoV-2 spike protein, L452R (in B.1.427/429) and Y453F (in B.1.298), can escape from the HLA-24-restricted cellular immunity. These mutations reinforce the affinity to viral receptor ACE2, and notably, the L452R mutation increases protein stability, viral infectivity, and potentially promotes viral replication. Our data suggest that the HLA-restricted cellular immunity potentially affects the evolution of viral phenotypes, and the escape from cellular immunity can be a further threat of the SARS-CoV-2 pandemic.

16.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.11.01.361766

RESUMO

Although ozone water is one of the promising candidates for hand hygiene to prevent fomite infection, the detailed effects of ozone water on SARS-CoV-2 have not been clarified. We evaluated the inactivating effect of ozone water against SARS-CoV-2 by its concentration and exposure time. The reduction rates of virus titer after 5 sec treatment with ozone concentrations of 1, 4, 7, and 10 mg/L were 81.4%, 93.2%, 96.6%, and 96.6%, respectively. No further decrease in virus titer was observed by the extended exposure time over 5 sec. High-concentration ozone water was considered to be effective in promptly inactivating SARS-CoV-2 virus.

17.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.06.06.138149

RESUMO

The spread of novel coronavirus disease 2019 (COVID-19) infections worldwide has raised concerns about the prevention and control of SARS-CoV-2. Devices that rapidly inactivate viruses can reduce the chance of infection through aerosols and contact transmission. This in vitro study demonstrated that irradiation with a deep ultraviolet light-emitting diode (DUV-LED) of 280 {+/-}5 nm wavelength rapidly inactivates SARS-CoV-2 obtained from a COVID-19 patient. Development of devices equipped with DUV-LED is expected to prevent virus invasion through the air and after touching contaminated objects.


Assuntos
COVID-19
18.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.05.25.115600

RESUMO

Coronavirus disease 2019 (COVID-19) is a disease that causes fatal disorders including severe pneumonia. To develop a therapeutic drug for COVID-19, a model that can reproduce the viral life cycle and evaluate the drug efficacy of anti-viral drugs is essential. In this study, we established a method to generate human bronchial organoids (hBO) from commercially available cryopreserved human bronchial epithelial cells and examined whether they could be used as a model for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research. Our hBO contain basal, club, ciliated, and goblet cells. Angiotensin-converting enzyme 2 (ACE2), which is a receptor for SARS-CoV-2, and transmembrane serine proteinase 2 (TMPRSS2), which is an essential serine protease for priming spike (S) protein of SARS-CoV-2, were highly expressed. After SARS-CoV-2 infection, not only the intracellular viral genome, but also progeny virus, cytotoxicity, pyknotic cells, and moderate increases of the type I interferon signal could be observed. Treatment with camostat, an inhibitor of TMPRSS2, reduced the viral copy number to 2% of the control group. Furthermore, the gene expression profile in SARS-CoV-2-infected hBO was obtained by performing RNA-seq analysis. In conclusion, we succeeded in generating hBO that can be used for SARS-CoV-2 research and COVID-19 drug discovery. Graphical abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=200 SRC="FIGDIR/small/115600v2_ufig1.gif" ALT="Figure 1"> View larger version (99K): org.highwire.dtl.DTLVardef@13a6908org.highwire.dtl.DTLVardef@1c59300org.highwire.dtl.DTLVardef@362167org.highwire.dtl.DTLVardef@1cb31ed_HPS_FORMAT_FIGEXP M_FIG C_FIG


Assuntos
Insônia Familiar Fatal , Pneumonia , Síndrome Respiratória Aguda Grave , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA